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ABSTRACT: Herbal medicine has been used to countermine
various diseases for centuries. However, most of the
therapeutic targets underlying herbal therapy remain unclear,
which largely slow down the novel drug discovery process from
natural products. In this study, we developed a novel
computational pipeline for assisting de novo identification of
protein targets for herbal ingredients. The pipeline involves
pharmacophore comparison and reverse ligand−protein
docking simulation in a high throughput manner. We evaluated
the pipeline using three traditional Chinese medicine
ingredients such as acteoside, quercetin, and epigallocatechin
gallate as examples. A majority of current known targets of
these ingredients were successfully identified by the pipeline.
Structural comparative analyses confirmed that the predicted
ligand−target interactions used the same binding pockets and binding modes as those of known ligand−target interactions.
Furthermore, we illustrated the mechanism of actions of the ingredients by constructing the pharmacological networks on the
basis of the predicted target profiles. In summary, we proposed an efficient and economic option for large-scale target
exploration in the herb study. This pipeline will be particularly valuable in aiding precise drug discovery and drug repurposing
from natural products.

■ INTRODUCTION

Herbal medicines show a wide range of therapeutic effects in
countermining cancers, virus infections, inflammations, hyper-
tension, and so on.1 The power of herbal therapeutics has
attracted increasing attentions. Each year, an increasing number
of publications described the mechanism of action (MOA)
underlying herbs such as ginseng,2 echinacea,3 green tea,4 and
ginger.5 Some herbal ingredients such as pancratistatin6 and
paclitaxel7 have been applied in cancer therapy.
In addition to the conventional “wet-lab” experimental

approaches, computer-aided drug discovery (CADD) serves as
an attractive complementary option in the efficient and
economic drug design.8 For instance, docking-based methods
have shown their impressive performance in large-scale
structure-based virtual screening for candidate drugs.9 Most of
docking approaches screen pool of ligands against a defined
protein cavity to identify the best fitting pose. On the other hand,
the reverse docking methods search for putative protein targets
that bind to a single ligand.10 It has been acknowledged that
biologically active herbal ingredients may exert therapeutic

effects through a mode involving multiple targets and low
dosage.11 Hence, the reverse docking methodology meets the
requirements of current mechanistic investigation toward herbal
medicine. Previous studies have proposed reverse docking as a
viable direction in the network exploration of herbal medicine12

and in systematic understanding of drug pharmacology and
toxicology.13 Up-to-date, only a few tools such as INVDOCK,12

TarFisDock,14 and idTarget15 are available for rapid identi-
fication of protein targets for a ligand. These tools are powerful
while having several disadvantages: (1) They are either limited
by small cavity database or constrained by the long computing
time. (2) It is challenging to determine a proper threshold value
to filter out those potential false ligand−receptor interactions.
(3) They are inconvenient to be implemented or updated
locally, which largely hinders their use in practical applications.
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Here, we introduce a novel computational pipeline for large-
scale identification of protein targets for a given ligand. We
evaluated the pipeline efficiency using three well-studied herbal
ingredients, namely, acteoside,16 epigallocatechin gallate
(EGCG),17 and quercetin18 as examples. Furthermore, we
illustrate the possible molecular basis of MOA underlying these
herbal ingredients on the basis of their predicted protein target
profiles.

■ RESULTS
Large-Scale Target Search of Herb Ingredients.Overall,

the computational pipeline identifies 151, 143, and 128
nonredundant targets for aceteoside, quercetin, and EGCG,

respectively. In this study, we further refined the target lists by
the vina score threshold of −8.5 kcal/mol for later target
analyses. The refined targets were most likely ingredient targets,
and they were listed in a descending order of the estimated
binding ability in Supporting Information Tables S1−S3. For
aceteoside, 38 out of 151 predicted targets owned a vina score
stronger than the threshold, including 10 cancer-related targets
and 2 asthma-related targets (Supporting Information Table
S1). Among the 38 targets, there are 4 known targets for
aceteoside and 30 predicted targets. These results are in
agreement with current applications of aceteoside in antiallergic
(asthmatic) and anticancer therapy.19,20 In the same way, we
refined 20 and 19 high binding affinity targets for quercetin and

Table 1. Statistic Summary for the Predicted Ingredient−Target Interactions for Acteoside, Quercetin, and EGCG Listed in
Supporting Information Tables S1−S3a

name of
ingredient

number of predicted targets with
binding energy above −8.5 kcal/mol

ratio of known targets in the
top five predicted targets

total protein targets in
VINA docking simulation

ratio of same binding modes as the known
PDD structures in selected five targets

acteoside 34 3/5 151 5/8
quercetin 20 5/5 143 6/7
EGCG 19 4/5 128 5/8

aThe comparison of protein pockets and docking modes were undertaken on the selected top five protein targets of each ingredient docking list in
Supporting Information Tables S1−S3.

Figure 1. Binding comparison between ingredients and known ligands with four predicted targets. The first column of (a−d) illustrates the binding
mode similarity. The red one stands for the ingredient, and the blue one stands for known ligand in the original PDB file. The second column of (a−d)
illustrates the key residues in the ligand−protein complexes determined by the commercial software Molecular Operating Environment (MOE). The
third column of (a−d) shows the key residues in the ingredient−protein complexes.

ACS Omega Article

DOI: 10.1021/acsomega.9b00020
ACS Omega 2019, 4, 9710−9719

9711

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00020/suppl_file/ao9b00020_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00020/suppl_file/ao9b00020_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00020/suppl_file/ao9b00020_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00020/suppl_file/ao9b00020_si_001.pdf
http://dx.doi.org/10.1021/acsomega.9b00020


EGCG, respectively. Some of these targets have been aimed at
countermining various diseases such as cancer, Alzheimer
disease, and some psychiatric disorders (Supporting Informa-
tion Tables S1−S3). Among the 20 refined targets of quercetin,
there are 7 known targets and 13 predicted targets. Among the
19 refined targets of EGCG, there are 7 known targets and 12
predicted targets.
Target Validation by Flexible BindingAnalysis.Because

the pipeline preset a large pocket size for high throughput
docking simulation, it’s thus necessary to evaluate the capability
of the Autodock Vina in locating the correct binding site. For
this purpose, we chose the top five predicted protein targets in
this study and downloaded the corresponding known ligand−
target complexes from the PDB database, if available, as
reference to evaluate the binding modes of the predicted
ingredient−target complexes. These selected targets consisted
of nine acteoside−target complexes, seven quercetin−target
complexes, and eight EGCG−target complexes in the predicted
list (Supporting Information Tables S1−S3). Of the total 24
predicted ingredient−target complexes, 16 cases (9/9 for
acteoside, 6/7 for quercetin, and 5/8 for EGCG, respectively)
had highly similar binding modes with the known ligand−target
complexes (Table 1).
As illustrated in Figure 1, both the original ligands (blue

color) and ingredients (red color) were well aligned in the same
protein pockets.
For instance, quercetin has very similar binding pose with

SGFR and cGMP-specific 3,5-cyclic phosphodiesterase
(PDE5A) as that of adenosine-5′-diphosphate and 5,7-
dihydroxy-2-(4-methoxyphenyl)-8-(3-methylbutyl)-4-oxo-4H-
chromen-3-yl 6-deoxy-α-L-mannopyranoside (7CA) (Figure
1b,d). However, in some cases, the best predicted binding site
is not at the known ligand-binding pocket in the PDB structures.
For example, the top prediction of quercetin with serine/
threonine-protein kinase (Chk1) is not in the known pocket;
however, the binding affinity between quercetin and the known
pocket is comparable with that of between quercetin and the
new pocket. This finding suggests Chk1 may have multiple
binding sites, and the quercetin−Chk1 interaction is non-
specific.
We have settled the parameters to generate maximum 20

output conformations for each docking, to increase the
possibility to sample the correct pocket during blind docking.
We have checked whether the docked structure was able to
reproduce the X-ray conformation by checking the root-mean-
square deviation (rmsd) between top score conformation and
native conformation from docking of 64 proteins and its
corresponding cocrystallized ligands. There are 23 in 64 cases
that the rmsd between top score conformation and native
conformation are smaller than 0.6 nm, and 38 in 64 cases that the
rmsd between top score conformation and native conformation
are smaller than 0.8 nm. It can see the ability of Autodock Vina

to find the correct binding site, and conformation in the top
score conformation is still challenging, but it is still one of the
best method to find the binding conformation efficiently based
on the best of my knowledge. Because the docking is a large
approximation and the diversity of the vina score training data
set is limited, it is still necessary to further validate the result with
molecular dynamic (MD) simulation or wet experiment.
Because the vina score cannot guarantee that the predicted
target is a true target, theMD simulation, which is physical based
and more rigid, is important to further validate before doing
experimental validation.

Target Refinement Using MD Simulation. The MD
simulation is helpful to determine the best binding conformation
for the predicted ingredient−target interactions. In almost all
cases, the predicted ingredient−target binding remained
relatively stable after 100 ns MD simulation (Supporting
Information Figure S1). Further replicated MD simulations
consolidated the robustness of the simulation outcome
(Supporting Information Figure S2). The protein target did
not experience large conformation changes after two independ-
ent MD simulation, even they started from random initial
velocities. We determined the binding free energy after MD for
the predicted ingredient−target complexes in the Table 2 using
the tool G_mmpmsa.
Comparatively, the known protein targets were selected in

priority (Table 1). At the same time, we summarized the critical
residues that contribute to free energy in Supporting
Information Table S4. The snapshots after 100 ns MD
simulation for the three test cases are shown in Figure 2. The
MD simulation analysis provides an ensemble of conformations
for the detailed interactions between the ingredients and target
proteins with more accurate free binding energy. This is helpful
for further precise drug redesign.

Understanding Pharmacology of Herb Ingredients via
Target Network. Targets of Acteoside and Their Pharmaco-
logical Activities.Of total 151 targets predicted for acteoside, 4
are known targets and 34 are highly potential targets. For
instance, the NOS2 (or iNOS) is a known target of several
approved or experimental drugs indications such as inflamma-
tory disease, endocrine disorder, and antithrombotic therapy as
documented in the DrugBank.21 For instance, we predicted
acteoside−NOS2 interaction with an Autodock Vina score of
−10.3 kcal/mol. The binding position and binding mode were
similar to that of the known protoporphyrin−NOS2 interaction
(PDB_ID: 4nos) (Figure 2a). The acteoside−NOS2 interaction
was also supported by previous work that acteoside could inhibit
enzymatic activity of NOS2 and 5-lipoxygenase.22 The cAMP-
specific 3,5-cyclic phosphodiesterase 4B (PDE4) is an known
target of acetoside’s analog plantamajoside.23 It ranked top 2 in
the predicted targets of acetoside. The aldose reductase
(AKR1B1) is another known therapeutic target, which is related
to the acteoside’s anti-diabetic activity.24 In the predicted target

Table 2. Binding Free Energy of NOS2 (PDBID 4nos) with Acteoside, PDE5A (PDBID 2h44) with Quercetin, and WARS
(PDBID 1r6t) with EGCG, Respectivelya

complex name
binding energy

(deviation) (kJ/mol)
van der Waal energy
(deviation) (kJ/mol)

electrostatic energy
(deviation) (kJ/mol)

polar solvation energy
(deviation) (kJ/mol)

SASA energy
(deviation) (kJ/mol)

acteoside−NOS2 −264.145 (2.185) −352.715 (1.525) −205.055 (2.686) 323.767 (1.347) −30.148 (0.092)
quercetin−PDE5A −185.516 (3.824) −134.277 (3.057) −199.478 (4.765) 163.389 (3.575) −15.027 (0.295)
EGCG−WARS −55.807 (4.840) −92.895 (7.816) −67.844 (6.139) 117.273 (11.493) −11.394 (0.958)

aThe free energy was determined at the last 10 ns simulation trajectory by g_mmpbsa tools with inner dielectric constant 2 and solvent dielectric
80. The energy deviations are shown in the brackets.
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list, the inosine-5-monophosphate dehydrogenase 2 (IMPDH2)
owned a high binding affinity with acteoside (vina score: −9.5
kcal/mol). The IMPDH2 is a known target of immunosup-
pressive agents such as the approved drug mycophenolate
mofetil and mycophenolic acid.25 The predicted acteoside−

IMPDH2 interaction may explain the immunomodulatory
activity of acteoside in vitro.26

Via mapping the 151 predicted targets to the KEGG pathway
by the DAVID webserver,27 we explored the possible synergistic
effects of acteoside (Supporting Information Table S5). Of the
151 predicted targets, 53 are related to metabolism, 20 are
related to cancer, and 18 are related to the PI3K-Akt signaling
pathway. In particular, 10 predicted targets are involved in the
prostate cancer (path: hsa05215), including GSK3B and CDK2
that own predicted affinity better than the cutoff −8.5 kcal/mol.
These results partially help to understand the cancer cell cycle
arresting effects of acteoside.28 Seventeen predicted targets are
related to the biosynthesis of antibiotics, and seven are involved
in the measles pathway (path: hsa05162). Interestingly, it is
noted the Tibetan herb “Ye-Xin-Ba” which contains acteoside
was used to treat measles.29 Besides, four potential targets are
related to the Alzheimer’s disease, which may be responsible for
the memory enhancement effect of acteoside.30 The possible
pharmacology network is shown in Figure 3.
During construction of the pharmacological networks, we

highlight targets that have predicted binding affinity stronger
than the threshold for aceteoside because we care more about
the pharmacological effects of the more relevant targets: targets
of quercetin and their pharmacological activities. The pipeline
predicted 143 targets for quercetin, including 7 known
therapeutic targets and 13 highly potential targets. The
cGMP-specific 3,5-cyclic phosphodiesterase (PDE5A, PDBID:
2h44) is on the top of potential targets in Supporting
Information Table S2. This result is consistent with the previous
finding that extraction of red onion peel could inhibit
phosphodiesterase 5A (PDE5A), and the activity was mainly
caused by flavonoid quercetin.31 Because PDE5A is strongly
related to erectile dysfunction,31 quercetin may serve as the
potential lead in countermining male sexual dysfunction. We
also predicted three known therapeutic targets for cancer

Figure 2. Snapshot conformations after 100 ns simulation for
acteoside−NOS2 complex, and quercetin−PDE5A complex, and
EGCG−WARS complex. Panel (a) shows the conformation of
acteoside−NOS2 complex; panel (b) shows the conformation of
quercetin−PDE5A complex; panel (c) shows the conformation of
EGCG−WARS complex. The residues which have free energy
contribution larger than 3 kJ/mol (blue) or smaller than −3 kJ/mol
(red) were explicitly shown. The ligands were shown in green color.

Figure 3. Pharmacology network of acteoside by mapping the potential targets to the KEGG pathways.
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therapy: the serine/threonine-protein kinase Chk1 whose
activity could be decreased by quercetin,32 serine/threonine-
protein kinase pim-1 (PIM1) whose activity was inhibited by
quercetin (IC50: 1.1 μm)33 and proto-oncogene tyrosine-protein
kinase Src (SRC) whose activity was inhibited by (64.0 ±
4.24)% using 50 μm quercetin.34,35 Besides, quercetin owned
the phytoestrogen-like activity, which is likely via the interaction
with the estrogen receptor β.36,37

Wemapped the 143 predicted targets into the KEGGpathway
database. Many targets are related to the metabolic pathways
(43 targets), cancer pathways (23 targets), PI3K-Akt signaling
pathway (21 targets), Ras signaling pathway (20 targets), and so
on. In particular, 13 protein targets are involved in the
tuberculosis (path: hsa05152), including 2 high-affinity binding
proteins SRC and JAK2. This finding may partially explain the
quercetin’s ability in combating tuberculosis.38 The possible
pharmacology network is shown in Supporting Information
Figure S6.
Targets of EGCG and Their Pharmacological Activities.

Overall, the pipeline predicted 128 targets for EGCG, including
6 known therapeutic targets and 11 highly potential targets. Of
these targets, the β-secretase 1 (BACE1), a Alzheimer disease-
related protein, owned high affinity with EGCG (vina score:−
9.9 kcal/mol).39 This result agreed with prior findings that green
tea catechins was an inhibitor of BACE1 and may partially
explain the potential application of catechins in Alzheimer’s
disease treatment.40 Moreover, the proto-oncogene serine/
threonine-protein kinase pim-1 (PIM1),41 histamine N-
methyltransferase, peroxisome proliferator-activated receptor
alpha (PPAR-alpha), macrophage metalloelastase (MMP12),
and glutathione S-transferase A3 (GSTA3) are all known targets
of EGCG.
The tryptophanyl-tRNA synthetase, cytoplasmic (WARS,

PDBID: 1r6t) is on the top of predicted targets in Supporting
Information Table S7. Previous study found the WARS
expression downregulated by EGCG.42 Literature surveillance
also suggested that WARS was likely the target of L-
tryptophan,43 a drug used in promoting serotonin production,
helping healthy sleep, relieving depression, strengthen pain
tolerance, and controlling weight.44 Interestingly, green tea can
promote healthy sleep, as well as mental and emotional well-
being.45 EGCG, as a major activity ingredient of green tea, may
contribute a lot to green tea’s antifatigue effect.46

We mapped the 128 predicted targets of EGCG into the
KEGG pathway database. Many targets are related to the
metabolic pathways (44 targets), cancer pathways (19 targets),
PI3K-Akt signaling pathway (18 targets), and so on. The
possible pharmacology network is illustrated in Supporting
Information Figure S4.

■ CONCLUSION
Thousands of years’ practice of herbal medicine has provided
valuable clues for safe and better drug development. However,
there still is a huge demand of information such as herb
ingredient−target interactions for aiding rational drug discovery.
The docking method is an economical and practical way to
potentially understand MOA of herb by simulation of ligand−
receptor binding. In this study, we proposed a novel computa-
tional pipeline for high throughput ligand target search against
the user-defined structure database. Comparing with the current
existing reverse docking packages, the new pipeline has several
advantages: (1) the pipeline is flexible in controlling scope of
target search by self-defining the protein structure database. This

keeps the pipeline unrestrained in dealing with various
simulation jobs without largely increasing maintenance cost.
(2) The pipeline is comparatively more efficient. Combination
of pharmacophore comparison and flexible docking allows large-
scale target screening to be done in a reasonable computational
cost. (3) The core components of the pipeline are two state-of-
art tools, PharmMapper and Autodock Vina, that can be easily
accessed on-line or downloaded. In case the PharmMapper fails,
we further introduced an alternative target searchmethod on the
basis of ligand similarity, whose core is a freeware LiSiCA, to
help narrowing down the target pool. Hence, the pipeline can be
easily updated accompanying with the component software
update. (4) The optional MD simulation on selected docking
results further refines the predicted targets, thus largely reducing
the false positives.
Using this pipeline, we predicted the potential targets of three

herbal ingredients, acteoside, quercetin, and EGCG, in human
structural proteome. Upon the predicted targets, we explored
the possible MOAs underlying these three ingredients by
demonstrating KEGG pathway enrichment analyses. Further-
more, we built the molecular interaction network for each
ingredient to aid better understanding of pharmacological
activities.
However, the computational pipeline is still far away from

perfectness. For instance, the pipeline is constrained in search of
protein targets with well-solved structures. The pipeline highly
relies on the performance of PharmMapper. Its background
pharmacophore database and online interactive job submission
have become the bottleneck of the pipeline. Although, we
introduced a ligand-based target search method as an alternative
choice to PharmMapper, the method is also limited by the
availability of ligand−protein complexes, for example, the
complete ligand−protein interactome extracted from the PDB.
Hopefully, with the dramatical increase in 3D structures of
ligand−protein interactions every year and the consistent
enrichment of PharmMapper background database,47 this
weakness is expected to be countermined in the future.
Instead of exploring target network of isolated compounds, it

would bemore interesting to research several compounds within
an herb or from the same source of plant. This is because several
ingredients from one herbal may exert a synergic effect or adding
effect by acting on multiple pathways. In the future, we can
search protein targets with our current pipeline for several herbal
ingredients from one herb to explore the underlying herb curing
mechanisms in a more efficient and systematic way.
Nevertheless, the reverse docking strategy introduced in this

study provides an alternative and practical way to rapidly identify
the possible protein targets within acceptable computational
time. It would be useful in aiding current pharmacological
understanding of novel compounds in a systematic manner.
Furthermore, it will prompt the modernization process of herbal
medicine by identifying potential ingredient−target interac-
tions.

■ MATERIALS AND METHODS
Computational Pipeline for Reverse Docking. The

computational pipeline consists of two major steps (Figure 4):
the pharmacophore-based target filtering and reverse docking
simulation.

Generation of Potential Target Pool by PharmMap-
per. The target filter step helps to filter out the unlikely targets
from the original protein structure pool by pharmacophore
comparison. We used an on-line tool PharmMapper (http://
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lilab.ecust.edu.cn/pharmmapper/index.php)48 for rapid predic-
tion of potential targets by comparing the query ligand against
the predefined pharmacophore models. Following the guide-
lines of PharmMapper, we uploaded the chemical structures via
the job submission form of the website. The default running
parameters were adopted. The server outputs a list of potential
ligand targets subject to the topmapping scores. In this study, we
selected the top 300 PDB structures of human proteins as
potential target pool for further prediction.
As an alternative solution to PharmMapper, we have

developed a tool that can be used for inverse protein target
searching based on deep neural network model and word2vec
techniques.49 The protein pocket and ligand was converted into
vectors as input, and a densely fully connected neural network
was used to do the training over the PDBBIND database. The
resulted model (we named it DeepBindVec here) shows high
efficiency and relative high accuracy (AUC above 0.9 in test set)
and indicates that it’s suitable for inverse protein target searching
and has potential to replace PharmMapper server in our
pipeline. It is independent of protein−ligand binding complex
structure; thus, it has the potential to overcome the limitation of
LigandScout50 which is the core of PharmMapper. When using
the DeepBindVec as core to do inverse target searching, we
named it IVS2vec, deposited in the gitlab (https://gitlab.com/
llb671205/densely-fully-connected-neural-network/tree/
master). We also proposed a ligand-based target search method
to help narrowing down the target pool as another alternative
solution to PharmMapper. The principle of the method is that
ligands having similar structures may have similar protein
binding abilities. The core components of the ligand-based
target search method are a freeware LiSiCA51 (http://insilab.
org/lisica/) and user-defined ligand−protein interaction data-
base. The LiSiCA applies the clique algorithm tomeasure the 2D
and 3D similarities between query ligand and target ligands by
the Tanimoto coefficients in large scale. The background
ligand−protein database can be created by extracting user-
interested ligand/cofactor−protein interactions from the

protein data bank (PDB), which includes about total 14 761
ligand−protein complexes. Alternatively, the user can download
the prebuilt ligand−protein interaction data set, the PROTEUS
data set, from insilab server (http://insilab.org/datasets/) for
convenience. The PROTEUS data set was created upon the
entire PDB data. Underlying the ligand-based target search is a
database of known ligand−protein interactions. We converted
the ligand from the PDB format into theMOL2 format using the
openbabel.52 Then, we wrote a python script to remove the
redundant ligands from the file. By doing so, we built the
nonredundant relation database between ligand and protein
targets. For user convenience, we deposit the demo package of
the method at the GitHub page (https://github.com/
haiping1010/LBTS). To be noted, several previous studies
utilized the similar ligand-based target search method in
prediction of potential drugs for PDE4 and PDE5.53 In this
study, we chose the PharmMapper approach, instead of ligand-
based target search method, as the component of the reverse
docking pipeline for better illustration.

Target Refinement by Reverse Docking Using
Autodock Vina. We used Autodock Vina54 to simulate
ligand−target interaction in large scale. The simulation starts
by selecting the receptor mass center as the pocket center using
the python module pdb_centermass.py of pdbTools_0.2.1.55

We set a large cavity volume space (126 Å in x, y, z dimension) as
the pocket space. The simulation was initialized by converting
the input PDB file format to PDBQT file format using the
AutoDockTools.56 The exhaustiveness was set to 8, the
num_modes was set to 9, and the energy_range was set to 3.
We adopted the default scoring function and optimization
algorithm of Autodock Vina, which have been well discussed in a
previous article.54 The simulation eventually outputted a list of
ligand−protein interactions in a descending order of binding
affinity. In this study, we selected the most likely targets for
further validation by setting a binding energy threshold value of
−8.5 kcal/mol. The choice of the proper threshold value is a
tradeoff between true positive rate and precisions. In our case,
we only focus on the potential targets that can bind with the
acquired ligand with relatively high affinity. If the cutoff is very
low (such as −6 kcal/mol), then the precisions would be very
low, many nonbinding protein targets will be chosen incorrectly.
While if the cutoff is very high (such as −10 kcal/mol), the true
positive rate would be low, andmany binding protein targets will
not be identified.
It should be noted that the docking method can be used to do

the reverse-docking on all available PDB structures without the
import from PharmMapper. There are more than 30 000 human
proteins deposited in the PDB database. It would take about 3−
4 days to finish all of the blind docking with ∼60 CPU cores. If
we only focus on the disease-related therapeutic target (about
2000−3000), it would be completed within 1 day by this reverse
docking with 10−20 CPU cores. Also, if we focus on the adverse
drug reaction (about several hundred), the time that is needed to
finish the reverse docking would be shorter. Thus, the pipeline
can be flexible without the importing from pharmMapper.

Prediction of Protein Targets for Herb Ingredients
Using the Computational Pipeline. Acquisition of Herb
Ingredients. In this study, we used three herb ingredients
acteoside, quercetin, and EGCG as examples for pipeline
evaluation. Acteoside is a bioactive ingredient of traditional
chinese medicine (TCM) drug Herba Cistanches. It also often
exists in the species of the Lamiales order.57 Acteoside has
several pharmacological properties including being antioxidant,

Figure 4. Reverse docking pipeline proposed in this study. The
computational pipeline consists of three major stages. In the first stage,
the PharmMapper sever is used to narrow down the protein pool by the
pharmacophore matching. In the second stage, reverse docking by
Autodock Vina is used for selecting target candidates by structure-based
virtual screening simulation. Finally, MD simulation is used to refine
and validate the candidate targets.
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immunosuppressive, and anti-inflammatory.58 Quercetin is a
widely distributed flavonoid in nature; its potential applications
include but are not limited to anticancer, anti-inflammatory, and
anti-asthmatic.17 EGCG is a type of catechin.59 EGCG is a major
active component in green tea and has potential therapeutic
activity in many disorders such as cancer and chronic fatigue
syndrome.18 We retrieved structures of these three herbal
ingredients from the PubChem database.60 Before further use,
we converted the downloaded *.sdf files to *.pdb format by the
UCSF Chimera.61

Prediction of Ingredient Targets. We submitted the three
herbal ingredients to the PharmMapper server for PDB wide
target prediction, achieving a list of 300 potential targets for each
ingredient. We downloaded protein structures from the PDB
database. We cleaned the structures by removal of cocrystalized
ligands and addition of hydrogen bonds using the VMD62 or the
UCSF chimera61 via TCL or python scripts, respectively. Then,
we simulated the ingredient−receptor binding by docking each
ingredient against the predefined pockets of the potential
protein pool using Autodock Vina. The reverse docking process
took about 24 h of computational time under a Linux system
with seven CPU cores (1064 Hz/core) for each ingredient. The
outcome of docking simulation was a list of PDB IDs, sorted in
descending order of binding affinity.
Refinement of Ingredient Targets by Classical MDs. To

further refine the ingredient−target interactions for accurate
complex conformation, we carried out MD simulation using the
Gromacs program with AMBER-14SB force field.63,64 In this
study, we selected three binding complexes for MD simulation
as examples: NOS2 (PDBID 4nos) with acteoside, PDE5A
(PDBID 2h44) with quercetin, and WARS (PDBID 1r6t) with
EGCG. The starting protein structures were downloaded from
the PDB structure database.65 The topology of ligand was
generated by ACPYPE,66 which relies on Antechamber.67 The
partial charges of ligand were calculated with R.E.D develop-
ment sever using the Gaussian method.68,69 First, we created a
cubic box and put the ligand−receptor complex at the center. A
minimum distance from the protein to box edge was set to 1 nm.
We filled the cubic box with TIP3P water molecules70 (the
numbers of water molecules are 42 271, 18 513, 27 676,
respectively) and then added counter ions (the numbers of
sodium ions are 1, 4, 3, respectively) to neutralize the total
charge using the Gromacs program tool.71 Eventually, the three
systems contained 140 399, 60 885 and 89 260 total atoms,
respectively. We used the particle mesh Ewald method72 for
calculation of electrostatic interactions under the periodic
boundary conditions. A cutoff of 14 Å was set in quantifying van
der Waals nonbonded interactions. Covalent bonds involving
hydrogen atoms were constrained by applying the LINCS
algorithm.73 We performed the MD simulation with parameters
of 50 000 energy minimization steps with a step-size of 0.01 nm,
100 ps simulation with isothermal−isovolumetric ensemble
(NVT), and 100 ps simulation with an isothermal−isobaric
ensemble (NPT) for water equilibrium. This was followed by a
100 nsNPT production run (step size 2 fs) with initial velocities
from the previous NPT equilibrium step. The Parrinello−
Rahman barostat and modified Berendsen thermostat were used
for simulation with a fixed temperature of 308 K and a pressure
of 1 atm. For each of the three complexes, we demonstrated two
replicated simulations with random initial velocities to check the
robustness of MD. We measured the rmsd of final protein
conformations of two MD replicates. A small rmsd value
indicates the robustness of the MD simulation. Although MD

simulation is expensive compared with docking, it is still much
cheaper than experimental validation. The MD simulation can
also be conveniently carried out on this academic free webserver
(http://mmb.irbbarcelona.org/MDWeb/).74
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TCM, traditional chinese medicine
EGCG, epigallocatechin gallate
MOAs, mechanism of actions
CADD, computer-aided drug discovery
MD simulation, classical molecular dynamic simulation
PDBID, protein database bank identity
NVT, isothermal−isovolumetric ensemble
NPT, isothermal−isobaric ensemble
MM/GBSA, molecular mechanics/generalized Born surface
area
SASA, solvent accessible surface area
DAVID webserver, database for annotation, visualization and
integrated discovery
MOE, molecular operating environment
7CA, 5,7-dihydroxy-2-(4-methoxyphenyl)-8-(3-methylbu-
tyl)-4-oxo-4H-chromen-3-yl 6-deoxy-α-L-mannopyranoside
Chk1, serine/threonine-protein kinase
PDE4, cAMP-specific 3,5-cyclic phosphodiesterase 4B
IMPDH2, inosine-5-monophosphate dehydrogenase 2
PDE5A, cGMP-specific 3,5-cyclic phosphodiesterase
SGFR or KIT, Mast/stem cell growth factor receptor
NOS2 or iNOS, nitric oxide synthase, inducible
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Combination of 2D/3D Ligand-Based Similarity Search in Rapid
Virtual Screening from Multimillion Compound Repositories.
Selection and Biological Evaluation of Potential PDE4 and PDE5
Inhibitors. Molecules 2014, 19, 7008−7039.
(54) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization,
and multithreading. J. Comput. Chem. 2010, 31, 455−461.
(55) Harms, M. PDB-tools: A Set of Tools for Manipulating and Doing
Calculations on PDB Macromolecule Structure Files.
(56) Sanner, M. F. Python: a programming language for software
integration and development. J. Mol. Graphics Modell. 1999, 17, 57−61.
(57) Sarkhail, P.; Nikan, M.; Sarkheil, P.; Gohari, A. R.; Ajani, Y.;
Hosseini, R.; Hadjiakhoondi, A.; Saeidnia, S. Quantification of
verbascoside in medicinal species of Phlomis and their genetic
relationships. Daru, J. Pharm. Sci. 2014, 22, 32.
(58) Lee, J. H.; Lee, J. Y.; Kang, H. S.; Jeong, C. H.; Moon, H.;Whang,
W. K.; Kim, C. J.; Sim, S. S. The effect of acteoside on histamine release
and arachidonic acid release in RBL-2H3 mast cells. Arch. Pharmacal
Res. 2006, 29, 508−513.
(59) Singh, B. N.; Shankar, S.; Srivastava, R. K. Green tea catechin,
epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and
clinical applications. Biochem. Pharmacol. 2011, 82, 1807−1821.
(60) Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H.
PubChem: a public information system for analyzing bioactivities of
small molecules. Nucleic Acids Res. 2009, 37, W623−W633.
(61) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.;
Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera?A
visualization system for exploratory research and analysis. J. Comput.
Chem. 2004, 25, 1605−1612.
(62) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular
dynamics. J. Mol. Graphics 1996, 14, 37−38.
(63) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS
4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435−447.
(64) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Comparison of multiple amber force fields and
development of improved protein backbone parameters. Proteins:
Struct., Funct., Bioinf. 2006, 65, 712−725.
(65) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235−242.
(66) Sousa da Silva, A. W.; Vranken, W. F. ACPYPE - AnteChamber
PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367.
(67) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom
type and bond type perception in molecular mechanical calculations. J.
Mol. Graphics Modell. 2006, 25, 247−260.
(68) Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.;
Delepine, J. C.; Cieplak, P.; Dupradeau, F.-Y. R.E.D. Server: a web
service for deriving RESP and ESP charges and building force field

ACS Omega Article

DOI: 10.1021/acsomega.9b00020
ACS Omega 2019, 4, 9710−9719

9718

http://dx.doi.org/10.1016/j.ymeth.2019.03.012
http://dx.doi.org/10.1021/acsomega.9b00020


libraries for new molecules and molecular fragments. Nucleic Acids Res.
2011, 39, W511−W517.
(69) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi,
J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
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